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Abstract. As part of a continuing program of numerical tests of convergence accelerators, we 
have compared the iterated Aitken's A2 method, Wynn's - algorithm, Brezinski's 0 algorithm, 
and Levin's u transform on a broad range of test problems: linearly convergence alternating, 
monotone, and irregular-sign series, logarithmically convergent series, power method and 
Bernoulli method sequences, alternating and monotone asymptotic series, and some perturba- 
tion series arising in applications. In each category either the - algorithm or the u transform 
gives the best results of the four methods tested. In some cases differences among methods are 
slight, and in others they are quite striking. 

1. Introduction. We reported in [19] on a numerical test program that compared 
eleven different scalar convergence accelerators on a broad range of infinite series 
problems in an attempt to find an "across-the-board" accelerator that would handle 
both linear and logarithmic convergence and both alternating and monotone series or 
sequences. The best candidates to emerge from that study were Levin's u transform 
[14] and Brezinski's 0 algorithm [6]. We also provided some theoretical support for 
that conclusion in terms of the wide range of series summed exactly by these 
methods and by proving that 02 and the Levin transforms all accelerate linear 
convergence. (The other Levin transforms, t and v, produced essentially equivalent 
numerical results to u, except that t fails on logarithmic convergence.) 

We have continued the test program started with [19] to include monotone linearly 
convergent series, series with irregular sign patterns (specifically, Fourier series), and 
sequences whose terms do not depend explicitly on the previous term and/or the 
index (e.g., Bernoulli's method). Since convergence accelerators are often known to 
transform divergent series to convergent ones, we have also included in our test 
program divergent power series, asymptotic series, and a few perturbation series. 

The methods considered in this paper are the u and 0 algorithms noted above and 
the "classical" E and iterated Y2 algorithms [17], [23]. All four methods were 
programmed in their simplest iterative forms, without the use of singular rules or 
other special devices. The iterative formulas for Levin's u transform were suggested 
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by F. Cordellier (private communication). The algorithm itself appeared much 
earlier in work of Bickley and Miller [4, p. 764]; we are indebted to C. Pegis for 
providing this reference and many other helpful comments. 

In all but one of the test problem categories considered here we demonstrate 
significant (and sometimes striking) results with some or all of the accelerators. The 
single exception is the class of monotone asymptotic expansions, for which none of 
the four methods is significantly different from summing to the smallest term, except 
that each requires more computation than a simple summation. 

The results in the other categories force us to modify the conclusion of [19] 
somewhat. In many cases, the e algorithm turns out to be the most effective of the 
four methods; in all others (including those studied in [19]), the u algorithm does. 
We found no case in which 2 and 0 were not matched or surpassed by one of E 
and u. 

In the next three sections we describe our numerical results for slowly convergent 
series (alternating, monotone, and irregular; linear and logarithmic), linearly conver- 
gent sequences (power method and Bernoulli's method), and divergent series (alter- 
nating and monotone; power and asymptotic series), respectively. Section 5 consid- 
ers three examples from the applied literature: radiative transfer reflection coeffi- 
cient [2], the Goldstein series for drag coefficient of a sphere [20], and the Rayleigh- 
Schr6dinger series for ground state energy of the anharmonic oscillator [3]. A 
summary of the results is given in Section 6. Details of the test problems that have 
not already been published elsewhere are provided in an Appendix. Our comments 
include some improvements of numerical answers available from other sources. 

Some of the results in this paper have been distributed previously in preprint 
form under the titles "Nonlinear Acceleration of Linear Convergence" and "Trans- 
formation of Divergent Series by Convergence Accelerators". We are indebted to 
readers and referees of those papers for many helpful suggestions, most of which 
have been incorporated in the present work. All of the computations reported here 
have been done in PL/C double precision on an IBM 370/165 at the Triangle 
Universities Computation Center with programs written by James Treat. Some 
preliminary results were obtained on an IBM 360 at NASA Lewis Research Center 
with programs written in SFTRAN by E. C. Bittner. To assure a common basis for 
comparison of the methods, those computations were repeated with the PL/C 
programs. 

2. Slowly Convergent Series. In this section we report numerical tests of the 
subject algorithms on alternating series, linearly convergent monotone series, loga- 
rithmically convergent series (necessarily monotone eventually), and series with 
irregular sign patterns (Fourier series). The test problems for alternating series and 
for logarithmically convergent series are the same as those used in [19], with the tests 
updated to include the iterated A2 algorithm. 

Table I shows the average numbers of significant digits achieved by partial 
summation (S column) and each of the four accelerators (A2, e, 6, and u columns) as 
functions of the number n of terms of each series used. The averages are taken over 
the five problems described in [19, Section 5]. The table shows a clear advantage for 
the u-transform, a virtual tie for second between 6 and A2, and somewhat slower (but 
still significant) acceleration by the E algorithm. 
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TABLE 1 

Average numbers of significant digits from n terms of five 
alternating series by partial summation (S) and four accelera- 
tors 

n S A2 e u 

1 0.5 0.5 0.5 0.5 0.5 
2 0.7 1.7 
3 0.9 2.1 2.1 2.1 
4 1.0 2.8 3.7 
5 1.1 3.8 3.7 5.4 
6 1.2 6.2 
7 1.2 5.7 5.2 5.6 7.6 
8 1.3 9.2 
9 1.3 7.7 6.7 10.0 

10 1.4 9.0 11.4 
11 1.4 10.0 8.3 12.9 
12 1.5 14.0 
13 1.5 12.3 9.8 12.3 15.0 
14 1.5 15.0 
15 1.6 14.1 11.3 15.0 
16 1.6 14. 2 15.0 
17 1.6 15.0 12.9 15.0 
18 1.6 15.0 
19 1.7 15.0 14.2 15.0 15.0 
20 1.7 15.0 
21 1.7 9.1 15.0 15.0 
22 1.7 15.0 15.0 

The same notation will be used in all subsequent tables, but in the intere'st of 
saving space, the tables will be condensed. In deference to the 0 algorithm, which 
requires three terms of the series for each additional entry, each row of the 
condensed table will present the best result from three consecutive rows of the full 
table. 

Tables 2 and 3 show the results for two groups of monotone linearly convergent 
series, described in detail in the Appendix. For the first group (Maclaurin-Laurent 
series for tan x and other trigonometric functions), the - algorithm is the best 
accelerator, closely followed by tA2. The 0 algorithm is somewhat slower, and u is 
slower still, but still significant. The performance of u on the second group 
(logarithm, dilogarithm, and other series) is very similar to that on the first group, 
but the other accelerators lose the advantage shown in the first group and lag slightly 
behind u. 

TABLE 2 
Average numbers of significant digfits from n terms of eight 
monotone linearly convergent series (Group I: expansions of 
trigonometric functions) 

n S A _ u 

2-4 0.8 1.2 1.2 1.2 1.1 
5-7 1.4 7.7 7.4 4.5 3.6 
8-10 2.1 10.1 11.2 8.2 5.7 

11-13 2.7 13.0 14.9 12.4 7.5 
14-16 3.4 14.8 14.7 12.9 9.6 
17-19 4.0 9.1 14.1 14.1 10.2 
20-22 4.7 11.2 13.3 13.6 10.3 
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TABLE 3 

Average numbers of significant digits from n terms of ten 
monotone linearly convergent series (Group II: logarithm, 
dilogarithm, etc.) 

n S A2 E u 

2-4 1.5 1.7 1.7 2.1 2.5 
5-7 2.4 4.7 4.0 4.5 4.8 
8-10 3.1 6.2 5.2 6.0 7.0 

11-13 3.9 8.2 7.4 7.6 8.8 
14-16 4.6 9.0 8.4 8.5 10.0 
17-19 5.3 9.8 9.9 9.5 10.5 
20-22 6.1 10.2 10.4 9.6 10.6 

In [19] we reported that u and 0 were capable of significant acceleration of 
logarithmically convergent series, whereas e was not. The latter conclusion applies to 
A2 as well, as is shown in Table 4. The test problems are described in [19, Section 6]. 

TABLE 4 

Average numbers of significant digits from n terms of eight 
logarithmically convergent series 

n S A2 ? 9 u 

2-4 0.7 0.8 0.8 2.1 1.9 
5-7 0.9 1.6 1.2 4.0 5.0 
8-10 1.0 1.7 1.4 5.9 8.0 

11-13 1.1 2.2 1.6 7.9 9.5 
14-16 1.2 2.3 1.7 8.6 9.8 
17-19 1.2 2.4 1.9 8.8 8.0 
20-22 1.3 2.6 1.9 7.8 6.1 

To test the sensitivity of the accelerators to irregular sign patterns (neither 
alternating nor monotone), we used two Fourier sine series, one slowly convergent 
and the other rather rapidly convergent, with five values of the argument for each. 
(Details of the series are in the Appendix.) The average results for the two groups of 
series are shown in Tables 5 and 6. Only the - algorithm is able to achieve significant 
acceleration for any of these problems, and, in the more rapidly convergent case 
(Table 6), the other three methods actually degrade the convergence rate. 

TABLE 5 

Average numbers of significant digits from n terms of five slowly 
convergent series with irregular signs 

n S A2 ? 0 u 

2-44 0.8 1.1 1.1 1.3 1.5 
5-7 1.0 2.2 3.8 2.1 1.9 
8-10 1.1 2.8 5.1 3.1 2.4 

11-13 1.6 3.4 7.0 3.2 2.3 
14-16 1.6 3.1 7.7 3.2 2.5 
17-19 1.5 3.4 8.7 3.1 2.5 
20-22 1.6 3.4 9.6 3.1 2.6 
23-25 1.6 3.6 10.9 2.8 2.0 
26-28 1.7 3.5 11.4 3.1 1.6 
29-31 1.6 3.5 12.0 2.7 1.5 
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TABLE 6 
Average numbers of significant digits from n terms of five 
rapidly convergent series with irregular signs 

n S A 2 E e u 

2-4 1.8 1.9 1.9 2.2 2.3 
5-7 3.0 4.1 5.5 3.5 3.5 
8-10 4.1 4.4 7.3 4.8 4.3 

11-13 5.2 5.3 10.0 5.4 5.5 
14-16 6.1 6.2 11.1 5.9 5.9 
17-19 7.0 6.4 13.0 6.5 6.8 
20-22 8.1 6.4 13.9 6.3 7.9 
23-25 9.1 7.4 14.3 7.2 8.5 
26-28 10.2 7.8 14.5 7.9 8.1 
29-31 10.7 8.0 14.7 7.5 8.4 

It has been suggested to us by several readers of the previous draft of this report 
that a better way to sum Fourier series is to apply complex versions of the 
accelerators to complex Fourier series and take real and imaginary parts of the 
results. We agree with that suggestion, and we plan to conduct future tests of 
complex versions on a variety of problems of interest. However, our point here is to 
demonstrate the weakness of all but one of these methods on real series that are not 
either monotone or alternating, a point that is made rather dramatically by Tables 5 
and 6. 

3. Linearly Convergent Sequences. In this section we present the results from 
application of the accelerators to linearly convergent sequences whose terms do not 
depend explicitly on the index n, in contrast to the series considered in the previous 
section. The sequences were generated by the power method for finding the 
dominant eigenvalue of a square matrix [16, pp. 474-480], using both symmetric and 
nonsymmetric matrices, and by the Bernoulli method for finding the dominant root 
of a polynomial [16, pp. 364-368]. 

TABLE 7 
Average numbers of significant digits from n terms of seven 
power method sequences generated by symmetric matrices 

n S A2 ? 0 u 

2-4 2.2 1.7 1.7 2.2 2.0 
5-7 3.7 6.1 6.4 4.5 4.2 
8-10 5.2 9.0 8.9 7.5 6.6 

11-13 6.8 11.6 12.4 10.2 8.9 
14-16 8.5 12.6 12.9 12.2 10.9 
17-19 9.7 10.8 13.4 12.9 12.3 
20-22 10.6 8.8 12.8 13.0 13.5 
23-25 11.5 10.4 12.3 12.8 13.4 
26-28 12.4 8.7 11.1 13.9 13.2 

The scalar sequences from the power method were generated by taking ratios of 
first entries of the corresponding vector sequences. The symmetric matrices used 
were Examples 4.1, 2, 4, 5, 6, 8, 9 of [10], and the nonsymmetric matrices were 
Examples 5.1, 2, 5, 7, 9 of [10]. We used the starting vector (1, 1,..., 1)T in all cases 
except when this was an eigenvector or nearly so, in which case (1, 0, 0, . . , 0)T was 
used. The power method results are shown in Table 7 for the symmetric case and 
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Table 8 for the nonsymmetric case. In the symmetric case, all four methods achieve 
noticeable acceleration. Differences among the methods are relatively small, but the 
preference order is e, A2, 6, u. In the nonsymmetric case, the same preference order 
appears, but the e algorithm is significantly better than the other methods. 

TABLE 8 

Average numbers of significant digits from n terms of five power 
method sequences generated by symmetric matrices 

n S A2 E e u 

2-4 1.2 0.9 0.9 1.1 1.2 
5-7 1.8 3.0 3.0 2.1 2.2 
8-10 2.6 6.6 4.5 4.0 3.5 

11-13 3.4 8.5 7.8 5.8 5.1 
14-16 4.2 9.0 9.7 7.7 6.4 
17-19 4.9 9.5 11.7 8.5 7.5 
20-22 5.3 7.0 11.8 8.1 8.0 
23-25 6.1 9.7 12.5 9.4 7.9 
26-28 6.6 10.0 13.2 9.4 7.9 

One subject of Brezinski's paper [7] is combining the vector version of the e 

algorithm and Aitken's Y2 with the power method to produce more powerful 
methods for finding all eigenvalues and eigenvectors of a matrix. We have not 
incorporated these or any other enhancements of the power method, since our 
objective is not to compute eigenvalues but to test accelerators on slowly convergent 
sequences. 

Test problems for the Bernoulli method were gleaned from a variety of textbook 
examples. After eliminating rapidly convergent examples, we were left with five 
polynomials of degrees 3 and 4 (see the Appendix for details). The pattern of results 
(see Table 9) is similar to those for the power method, with the same preference 
order among the four methods. 

TABLE 9 

Average numbers of significant digits from n terms of five 
Bernoulli method sequences 

2 n S A E e u 

2-4 1.1 1.6 1.6 1.5 1.6 
5-7 1.5 2.9 3.4 3.1 2.6 
8-10 1.9 3.3 4.3 3.5 3.3 

11-13 2.3 5.5 6.4 4.0 4.0 
14-16 2.7 6.2 7.0 3.9 4.7 
17-19 3.1 6.9 7.5 6.0 5.5 
20-22 3.4 3.8 7.8 6.4 5.7 
23-25 3.8 4.0 8.1 6.7 6.0 
26-28 4.2 4.1 8.1 6.6 6.1 

4. Transformations of Divergent Series. Sequence accelerators may sometimes be 
used to transform divergent series to meaningful convergent sequences, for example, 
to "sum" power series beyond their radius of convergence (analytic continuation), or 
to extend the useful region of asymptotic series. In this section we consider the effect 
of applying the four accelerators to alternating and monotone power series and to 



NONLINEAR CONVERGENCE ACCELERATORS 487 

alternating and monotone asymptotic series. In each of the first three cases, the 
results are quite good for at least one of the methods; in the fourth, there is little 
improvement over summing the series to its smallest term. 

Tables 10 and 11 show the average results for three alternating and six monotone 
divergent power series, respectively. (Details of the test problems are in the Appen- 
dix.) There is no S column in these tables, since partial sums are never close to the 
"correct" answers, that is, to the values of the analytic continuations of the functions 
represented by the series. All four methods are capable of achieving highly accurate 
answers in the alternating case, the u transform somewhat more quickly than the 
others. In the monotone case, the u transform is useless, and the best results are 
obtained with e and tA2. 

TABLE 10 

Average numbers of significant digits from n terms of three 
alternating divergent power series 

n A2 Ce u 

2-4 1.3 1.3 1.8 2.6 
5-7 3.8 3.4 3.8 5.8 
8-10 5.3 4.4 6.3 8.6 

11-13 8.9 6.4 9.1 11.0 
14-16 10.7 7.5 10.1 13.1 
17-19 12.5 9.5 13.3 12.9 
20-22 12.9 10.5 12.9 11.7 
23-25 13.1 12.7 12.7 11.3 

TABLE 1 1 

Average numbers of significant digits from n terms of six 
monotone divergent power series 

n A2 E U 

2-4 0.4 0.4 0.2 0.0 
5-7 4.2 4.1 1.8 0.8 
8-10 7.3 7.0 5.4 0.6 

11-13 9.5 10.5 8.2 2.0 
14-16 10.2 10.6 9.0 1.2 
17-19 10.2 11.0 9.2 1.7 
20-22 10.1 10.5 9.3 1.8 
23-25 10.0 10.9 8.9 0.8 

For our alternating asymptotic expansions, we selected 14 series of the form 
: ( l)n lan? xn, valid for large x, but with values of x small enough to produce wild 

divergence, so that no useful information is obtained directly from partial sums. (See 
the Appendix for details of the coefficients and values of x.) The problems separated 
themselves into two groups displaying rather different behavior for A' and 0. (The 
behavior of u and e was consistent across all 14 problems, with u achieving 
significantly better results.) For the 10 problems in Group I, the dependence of an 

on n is factorial in nature, and all four accelerators were able to extract useful 
information, with u achieving the best results, E the worst. The other four problems 
(Group II) have a factor of n in an (in addition to factorials), and this appears to 
interfere with the effectiveness of 2 and 0. The results for both groups are shown in 
Table 12. 
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TABLE 12 

Average numbers of significant digits from n terms of ten 
alternating asymptotic series (Group I) and four exceptional 
cases (Group II) 

Group I Group II 

n A2 u A2 6 U 

2-4 1.3 1.3 1.9 2.4 0.3 0.3 0.5 1.1 
5-7 3.1 2.4 3.5 4.5 1.2 0.8 0.5 1.6 
8-10 4.1 2.8 5.4 6.0 1.4 1.2 1.4 3.2 

11-13 6.4 3.5 6.6 7.7 1.0 2.7 0.8 5.1 
14-16 7.2 3.8 6.8 8.8 1.2 3.2 1.5 7.5 
17-19 7.9 4.3 8.0 9.2 1.1 3.4 1.2 6.8 

The test group of monotone asymptotic series consisted of 8 series of the form 
l a x- with coefficients scaled so that x = 25, 50, and 100 would represent "small", 
"medium", and "large" x, respectively, for purposes of summing the series to their 
smallest terms. With small x, this produces only a few significant digits of the 
"answers" represented by the series; with medium x, at least eight significant digits; 
and with large x, almost machine accuracy. (Further details of the test problems are 
in the Appendix.) 

The results for these problems, shown in Table 13, can be summarized quite 
simply. All four accelerators are capable of achieving accuracy comparable to, but 
not superior to, partial summation. All tended to extract this information from 
slightly fewer terms of the series, but not enough fewer to warrant the extra 
computation. The partial sums of course tend monotonically toward their closest 
approach to the answer before diverging, but that was not always the case with the 
accelerated sequences. In contrast to the alternating case, the "useful region" for 
these asymptotic expansions was not extended noticeably by any of the accelerators. 

5. Applications. 
(a) Reflection Coefficients in Radiative Transfer. Bellman and Kalaba [2] have 

considered the following problem: Suppose parallel rays of radiation are incident 
upon a plane-parallel slab of thickness x which absorbs radiation and scatters it 
isotropically. For input and output angles at 60? to normal they calculated the 
reflection coefficient at thicknesses from 0 to 1.2 mean free paths in steps of 0.02. 
From this slowly increasing sequence of 60 terms they wanted to determine the limit 
as x x-* o, i.e., the reflection coefficient for the infinite thickness case, which they 
knew from other considerations to be 0.272389. 

Their approach to the problem was to apply Aitken's A2 process to the known 
sequence and then do it again to the resulting sequence. From this they concluded: 
"We see that we may predict a limiting value of about 0.27 which is quite accurate 
enough for many purposes." In fact, it is difficult to see how this conclusion could 
be drawn from their data if the answer were not already known. Both A2 sequences 
are initially decreasing and overshoot the limit on their way to a broad, flat 
minimum at about 0.256. The first application then rises steadily, but very slowly, to 
0.266, which is suggestive of the desired result, if there were any way to know that it 
does not rise to 0.28 or beyond. The second application, from which the conclusion 
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is drawn, produces a sequence that is quite unstable after about the 30th step. While 
it has an occasional value thereafter in the vicinity of 0.27, it has many others 
nowhere near that value. 

In contrast to this situation, application of the e algorithm to the original sequence 
produces a sequence the last 10 terms of which (corresponding to the last 20 terms of 
the original) agree with the desired answer to 3 SD, which is about as much accuracy 
as can be expected from 8 SD monotone data. The 0 algorithm is convincing only 
for 2 SD (but still better than A2), and the u algorithm does not produce any useful 
information. 

(b) The Goldstein Series. The drag coefficient f(R) of a sphere as a function of the 
Reynolds number R is given by the Goldstein series 

300 

(1) (R) = 2 a,R, 
n=O 

where the first 24 coefficients are given to 8D by Van Dyke [20]. This series (in 
slightly different notation) was used by Shanks ['17] to detect an error in Goldstein's 
evaluation of the sixth coefficient, a5, by matching entries in (what we now call) the 
e table with 3 SD values of f obtained by Goldstein by another method (numerical 
solution of an infinite system of linear equations). The E extrapolation from five 
terms of the series matched quite well, while that based on six terms did not, 
suggesting the error, which Shanks corrected. 

The radius of convergence, Ro, of the Goldstein series is determined by a 
singularity at -R0 = -1.04543, and the coefficients alternate in sign after the first 
two. Van Dyke observes that the singularity may be mapped to infinity by an Euler 
transformation (a linear convergence accelerator) to produce a series valid for large 
R: 

(2) f(R) = 0 = x 
Ox n=o 0 

The first 24 coefficients of this series are also given to 8D in [20]. We have bo 1, 
and all subsequent bn's are negative. It is from the transformed series that Van Dyke 
obtains useful information about the values of f. 

We consider the following questions: Can one obtain values of f by applying other 
accelerators (in particular, e, 0, U; A2 was not used in this test) to the Goldstein 
series? (Note that accuracy of results from the transformed series is limited by the 
accuracy of Ro0 known only to 6SD. The other accelerators are limited only by the 
accuracy of the coefficients.) How rapidly does the transformed series converge? Can 
the transformed series be improved by applying the nonlinear accelerators to it? 

The answers to these questions are shown in Table 14. For R = 1, the Goldstein 
series is convergent, but too slow to provide any useful information. The E and u 
results are good enough to give a more accurate value for f(l) than can be acquired 
from Eq. (2): 4.8699299. Since the'series in Eq. (2) quickly achieves the maximum 
possible accuracy (6 SD, S column in Table 14), there is not much for the accelera- 
tors to do in this case. 

The fact that bo is quite different from all subsequent ba's (opposite in sign and 
relatively large) suggests that better results may be obtained from the u transform by 
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applying it to all terms except the first, i.e. using the second column of Levin's array 
[14] rather than the first. This supposition is borne out by the equation (2) columns 
headed u and u(2, which come from the first and second columns of the Levin array, 
respectively. The u column shows worse results than the S column, while the U(2 

column is at least a slight improvement. 
For two of the three divergent cases, we see that the E algorithm gives slightly 

faster (but not more accurate) results than the Euler transform. The transformed 
series may also be accelerated slightly, but not made more accurate, by subsequent 
application of E or u(2). The 0 algorithm and direct application of the u transform 
seem not to be very useful for this problem. 

TABLE 14 
Significant digits in drag coefficients f(R) as a function of 
number n of terms of Goldstein 's series 

Equation (1) Equation (2) 

R fln E C 0 u S u u(2) 

1 5-7 3 1 2 3 2 2 2 3 
8-10 3 4 5 5 4 2 3 6 
11-13 6 4 7 6 6 5 5 6 
14-16 7 3 7 6 6 5 6 6 
17-19 8 6 8 6 6 5 6 6 
20-22 8 6 8 6 6 6 6 6 

5 5-7 1 1 1 2 1 1 1 1 
8-10 1 2 2 2 3 1 1 3 
11-13 2 1 3 3 4 1 3 3 
14-16 4 2 4 3 4 2 2 4 
17-19 4 0 3 3 5 1 3 4 
20-22 4 1 2 4 5 3 3 4 

10 5-7 1 0 1 1 1 1 1 0 
8-10 1 1 2 2 2 1 1 2 
11-13 2 1 2 2 3 1 2 2 
14-16 3 1 2 2 3 1 2 3 
17-19 3 2 2 2 4 1 2 4 
20-22 2 1 0 3 4 3 2 3 

25 5-7 1 0 0 1 1 1 1 0 
8-10 1 1 1 1 2 1 1 2 
11-13 1 0 2 2 2 1 2 3 
14-16 2 0 1 2 2 0 2 3 
17-19 2 0 2 2 3 1 2 3 
20-22 1 0 0 2 3 0 2 2 

(c) The Rayleigh-Schrodinger Series. Bender and Wu [3] have computed the first 75 
terms of the Rayleigh-Schr6dinger series for the ground state energy E(1, /3) of the 
anharmonic oscillator. Simon [18] has reported extensive computations with this 
series using the diagonal of the Pade table (which is theoretically equivalent to using 
the E algorithm [17], [23]), and Graffi, et al. [9] have obtained more accurate results 
by a Borel-Pade summation technique. In particular, Tables 2 and 3 in [9] give the 
most accurate values available for E(l, /3), ,8 = 0.1(0.1)1.0 and B = 1(1)14. We have 
computed the effect of accelerating the series by a, 0, and u for 3 = 0.1, 0.5, 1, 5, and 
10, to compare the use of these simpler accelerators to the Borel-Pade summations. 
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The results of these computations are shown in Table 15 for small /3 and in Table 
16 for intermediate /3. The results for E are similar, but not identical, to those given 
by Simon [18] for Pade approximants. Different methods of evaluation of the same 
quantities can produce noticeably different numerical results, especially when trans- 
forming rapidly divergent series. The 0 and u results are better than those from e (or 
Pade) in every case, and they are nearly as good as the Borel-Pade results in [9]. 
Graffi, et al., give rate of convergence data only for /3 = 0.1 and 1.0 (their Table 1). 

For /3 = 5 and 10, Table 16 shows the digits of E(1,,B) that one might believe 
correct if only a single accelerator were used, and the range of n over which these 
answers are constant. These results show that the E computation would be somewhat 
misleading, but 0 and u would not be. 

TABLE 15 

Significant digits of E(1, /3) as a function of number n of terms 
in the Rayleigh-Schrodinger series. Data in the Borel-Pade 
columns (B) are taken from Tables 1 and 2 in [9]. 

= 0.1 =0.5 1.0 

n E e u B |E e u B E e u B 

1-5 3 1 3 6 2 1 2 1 1 1 2 
6-10 6 7 8 8 3 4 5 2 3 6 4 

11-15 8 9 10 11 4 6 6 3 4 5 5 
16-20 10 11 12 15 5 7 6 3 6 5 7 
21-25 12 11 14 15 6 7 8 9 4 6 6 7 
26-30 13 9 14 6 7 6 5 5 3 
31-35 14 14 12 7 7 3 5 5 
36 -4 0 15 14 10 7 7 5 5 

TABLE 16 

Best estimates of E(1, ,/) for intermediate /3. Columns headed 
"n" indicate numbers of terms of the series for which each 
method gave the answer shown. Data for the Borel method are 
from Table 3 of [9] 

E n e n u n Borel n 

5 1.0 39-41 2.018 19-28 2.02 10-14 2.017 ?-21 
10 2.3 31-33 2.45 1 22-31 2.45 | 11-13 2.440 ?-21 

The radius of convergence of the Rayleigh-Schrodinger series is zero, that is, all of 
the "accelerated" results are obtained from transformations of divergent series. 
However, this series shares with the Goldstein series the property of having two 
terms of the same sign before becoming alternating. One might suppose that, as in 
the case of the Euler-transformed Goldstein series (2), better results would be 
obtained from the second column of the u array or the second diagonal of the E and 
O tables. However, we found no significant differences in results for either the 
untransformed Goldstein series (1) or the Rayleigh-Schrodinger series from these 
deferred applications. We conclude that the u transform, at least, is sensitive to the 
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starting point in an "eventually monotone" series, but none of the accelerators 
displayed this sensitivity for an "eventually alternating" series. 

6. Summary and Conclusions. The numerical evidence presented here suggests 
grouping the types of series and sequences considered into a small number of 
categories, in each of which a rule of thumb emerges. In the absence of theoretical 
support, these "rules" can never be more than that, of course. 

(a) Alternating Series. The evidence of Tables 1, 10, and 12 suggests that, of the 
four methods tested, the u algorithm is the best for accelerating alternating series 
(convergent, divergent, asymptotic), 0 and A2 are virtually tied for second best (but 
with an exception to be noted), and E is least effective (though still quite good). Most 
of the series encountered in practice have coefficients that are factorial in nature, but 
when this is not the case and the series is divergent (as with Group II in Table 12), 0 
and A2 are susceptible to failure. 

(b) Monotone Linearly Convergent Series, Other Linearly Convergent Sequences 
(Power and Bernoulli Methods) and Monotone Divergent Series. For the groups 
represented by Tables 2, 7, 8, 9, and 11 (but not Tables 3 and 13) we find the four 
methods ranked in decreasing order: E, A2, 0, u. The exceptional cases in Table 3 are 
convergent power series with nonfactorial coefficients; here there is significant 
acceleration, but the differences among the four methods are not significant. For 
monotone asymptotic series (Table 13), neither the acceleration nor the differences 
among methods are significant. 

(c) Logarithmic Convergence (Table 4). Only the u and 0 algorithms are capable of 
significant acceleration of logarithmically convergent series, and u is slightly better 
than 0. 

(d) Irregular Sign Patterns (Tables 5 and 6). The E algorithm is the least sensitive of 
these methods to sign patterns and the only one of the four capable of significant 
acceleration of all the Fourier series tested. 

Appendix: Details of Test Problems: Those test problems that are not already 
described elsewhere are given in detail here, along with some comments about 
individual problems and some improvements in published answers. 

(a) Fourier Sine Series. The series used to determine the effect of irregular sign 
patterns (Tables 5 and 6) were, respectively, 

00 sin nx 
(Al) n =(7T-x)/2, 0 < x < 27T; 

(A2) ~ ~ 00sin nx sin x ~ << 
(A2) nElnn 

tan (2cs) 0< x <27T. n1n2~ n2 - cosxj 

In each case we used x = 1(1)5. 
(b) Power Method. The test problems for Tables 7 and 8 all come from Chapters 4 

and 5 of [10] and are listed in Section 3 above. A by-product of our computation is a 
list of improved answers for some of the examples in [10] as shown in Table A1. 
Some of these are merely improvements in accuracy, but some are corrections of the 
final digits reported in [10]. In particular, the results for Examples 4.8 and 4.9 cast 
some doubt on whether the separation of the two largest eigenvalues is as indicated 
in [10], or indeed if there is any at all. 
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TABLE Al 
Corrected answers for dominant eigenvalues of matrix examples 
in Gregory-Karney [101 

Example Answer in [10] Corrected Answer 

4.4 30.28868 30.28868 53458 021 

4.5 1.67828 1.67827 983 

4.6 22.40687 532 22.40687 53075 804 

4.8 16.14274 46553 16.14274 46551 220 

4.9 12.41133 643 12.41133 64117 214 

5.10 1.8390 1.83903 66545 819 

The power method can produce some (well-known) anomalies. Example 4.3 in [10] 
is the infamous matrix of Bodewig [5], a 4 by 4 symmetric matrix with small integer 
entries which requires many hundreds of iterations with the power method before 
the sequence gets near the dominant eigenvalue A,. The second eigenvalue A2 is 
nearly equal in magnitude and opposite in sign, and the starting vector (1, 1, 1, I)T is 
nearly orthogonal to the dominant eigenvector. The latter fact causes the sequence to 
first approach A2 [16], and the former drastically slows the eventual convergence to 
A,. One may reasonably ask whether the accelerators can bypass the approach to A2 
or if they hasten it as well as the approach to Al. Our evidence indicates the latter. 
All four accelerators in fact get closer to A2 faster than the power sequence, and e 
actually produces 9 SD of A2 from the first 50 terms of the sequence. (The extremely 
slow convergence of the power sequence on problems of the Bodewig type is easy to 
avoid; see [16] or [21].) 

Example 4.5 of [10] is another for which the first "approach" is to A2. The 
accelerators produced 3 to 5 SD of A2 from the first 3 to 19 terms before turning 
their attention to Al. All four achieve 9SD of X1, at n = 31, while the power 
sequence is converged to 6 SD at this point. For Example 5.5, the initial approach of 
the power sequence is to the third largest eigenvalue, A3 = 2, and this is the 
"answer" found by the accelerators as well. 

Several of the test problems had two or more equal or nearly equal dominant 
roots, which seemed to cause no problems for either the power method or the 
accelerators. On the other hand, when the power sequence failed to converge due to 
complex dominant roots [10, Example 5.26], the accelerators also failed to converge 
to anything. 

Example 4.7 of [10] produced some unanticipated difficulties and behavior by the 
accelerators that does not fit the general pattern at all. The example is a 5 by 5 
matrix with small integer entries and reasonably separated positive eigenvalues. 
(There is a misprint in the original source [15], faithfully reproduced in [10]: The 
4,5-entry of the matrix should be -1, not 1.) The power sequence quickly ap- 
proaches A2 (3 SD) and then becomes a monotone increasing sequence whose graph 
is concave upward until about n - 20, which effectively obscures its limit and 
apparently confuses the accelerators. After passing the inflection point, the u 
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algorithm quickly converges to 6 SD of XI, but the other accelerators can achieve no 
more than 1 SD from 30 terms, worse than S itself. This was the only example we 
found of a power sequence for which u displayed clear superiority. 

The same example has been used by Iguchi [12], [13], and his methods are worth 
commenting on in this connection. These papers consider ways to overcome initial 
instability in Aitken's A2 process by using a short, finite geometric series instead of 
an infinite series. In [12], Iguchi makes the choice of which series to use depend on 
an early estimate of the ultimate ratio of terms, and in [13] he uses the short series 
initially and then switches to A2. By both methods, he appears to get results at least 
as good as the u transform on Example 4.7 of [10]. However, we have not found any 
other problems for which either of Iguchi's methods works better than e, say. 

(c) Bernoulli Method. The test polynomials for determination of dominant roots by 
Bernoulli's method are shown in Table A2. Behavior of individual sequences varied 
considerably from the averages shown in Table 9. For the first problem, the 
Bernoulli sequence converged to 11 SD in 30 steps, while all four accelerators 
produced 15 SD (the maximum possible) from fewer terms. For the second and third 
problems, only e was able to produce more than 1 SD from 30 terms, and it could 
reach only 4 SD and 3 SD respectively. The behavior of all methods on the other two 
problems closely resembled the averages. The answers shown in Table A2 for those 
two problems are more accurate than those given in the original source [11]. 

TABLE A2 
Polynomials used for Bernoulli method tests 

x4 x3 x2 x 1 Dominant root Source 

1 -5 -17 21 7.0 [16, p. 366] 

1 -3 -60 150 300 7.61323 07 [16, p. 393] 

10 -21 -40 84 2.1 [16, p. 393] 

70 -140 90 -20 1 0.93056 81557 970 [11, p. 148] 

128 -256 160 -32 1 0.96196 97662 556 [11, p. 171] 

(d) Divergent Power Series. The series used to obtain Table 10 were the alternating 
sums of 2 /n, 3n/n, and 3n/n2, with respective answers ln 3, ln 4, and 

(A3) dt = 1.93937 54207 67.... 

(See [1, 27.7.1, 2, 5 and Table 27.7].) The monotone series used for Table 11 were the 
Laurent-Maclaurin expansions of tan x and sec x for x = 2 and 3, and of cot x and 
csc x for x = 5. (See [1, 4.3.67-70].) 

(e) Alternating Asymptotic Expansions. The test problems for Table 12 are shown 
in Tables A3 and A4. The notation for special functions is that of [1]. Digits shown 
in parentheses were obtained from four or more consecutive terms of the u transform 
sequence (and not contradicted by any of the other methods). All other answers were 
obtained independently from formulas in [1]. 
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TABLE A4 
Alternating asymptotic series, Group II. Each series is the 
alternating sum of a x-n. Reference: [1, Sections 13.4, 5, 6] 

a x Answer Numerical Answer n 

n(n+l)! 2 8 U(3,2,2) 0.21874 21(3) 

n(n+l)! 1 2 U(3,2,1) 0.21095 791 

n(n+l)(n+2)! 2 96 U(4,2,2) 0.40616 305 

n(n+l)(n+2)! 1 12 U(4,2,1) 0.24748 431 

We included among the test problems the sum of n(2n - 1)(2n + 1)2n, which 
is the value at x = of the series expansion of a rational function: 
6(X4 + 6X2 + 1)/(l -X2)4. The e algorithm is exact on 9 terms of such an 
expansion [17, Theorem IX], but in fact it gets only 12 correct digits of the right 
answer, when computed in double precision, due to roundoff. The u transform, 
which is not exact, gets the answer to 6 SD from 14 terms of the series, -and 0 fails to 
get any correct digits. 

TABLE AS 

Monotone asymptotic series. (a) The first six problems are of the 
form 2 anjxn and have answers of the form -P(x) + 
xQ(x)e-xEi(x), where P and Q are the tabulated polynomials. 
Reference: [1, Sections 5.1, 10.2, 13.4, 13.5, 13.6]. (b) The other 
two problems are of the form 2 anxn-I, where an = bnan_ 
Reference: [1, Formula 9.7.1 and Table 9.8]. 

(a) 

Coefficients Answers 

an P(x) i Q(x) 
_ ~ _ _ _ _ 

n! 1 1 

n(n+l)! x(x-1) x(x-2) 

n(n+l)(n+2)! x2 (x25x+2) x2(x2_6x+6) 

n2(n+l)! x(x 2-4x+1) x(x-1) (x-4) 

n3(n+1)! x(x3-8x 2+2x-1) x(x 3-9x 2+19x-8) 

n 4(n+l)! |x(x-l)(x 3_12x2+31x-1) x(x -14x3+55x -65x+16) 

(b) 

Coefficients Answers 

al bn 

1 5(2n-3) /8(n-1)2 12x/5 e I0(x/5) 

-1 5(2n-1) (2n-5)/8(n-1) - ,2grx/5 eeX/5I1(x/5) 
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It is well known that analytic representations for "sums" of asymptotic series are 
not unique. For example, the sum in the third problem of Table A3 can be written 

oo 
(_l)n+ '3 7*- 11 **(4n - 1) 

n1 ~ .2n n=l IT 

which is an asymptotic series for 

1 + 2- r cos ( t dt = 0I 12068. 

[1, 7.3.27 and Table 7.8], but the accelerators all recognized the series as representing 
a confluent hypergeometric function. 

(f) Monotone Asymptotic Expansions. The test problems for Table 13, and their 
numerical answers, are shown in Tables A5 and A6. For x = 100 and x = 50, the 
numerical answers were obtained from the asymptotic series to the number of digits 
shown. For x = 25, the formulas in Table AS were used. The first six of these 
involve high loss-of-significance; we computed 25e-25Ei(25)= 1.04366 19362 666, 
using [1, Formula 5.1.10]. For the other two, Table 9.8 of [1] suffices. 

TABLE A6 

Numerical answers for the eight problems in Table AS for each 
of three values of x 

x = 100 x = 50 x = 25 

0.01020 62527 74835 7 0.02085 22777 97199 0.04366 19362 

0.02127 71933 89970 0 0.04546 67132 7847 0.10561 33532 

0.13600 10469 98297 0.31205 1554 0.86959 0 

0.02263 72038 59953 0 0.05170 77443 686 0.14039 6964 

0.02553 50486 38497 0.06599 48948 44 0.23717 26 

0.03190 38772 20799 0.10090 5796 0.55749 0 

1.00643 57190 3983 1.01329 0709 1.02874 4642 

-.98094 32134 34997 -.96120 73907 -.91906 31157 

We discovered by accident an exception to the observation in Section 4 that none 
of the accelerators extend the "useful region" for monotone asymptotic series. For 
the second problem of Table AS with x = 2 and the fourth problem with x = 1 or 4, 
the u transform gives an exact answer (-2,2, -4, respectively) in a small number of 
steps (4,3,5, respectively). (The second of these three results is also obtained by 02 

and E2 Y2.) Note that these values of x are the integer roots of the polynomials 
Q(x) in Table AS, i.e., values for which the transcendental part of the desired sum 
vanishes, so that the answer agrees with the polynomial -P(x). However, the actual 
function constructed by the u transform is always a rational function, never just a 
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polynomial. None of the other polynomials Q(x) have any positive rational roots, 
and no other cases were found in which the accelerators could find even one correct 
digit of the desired answer when x was less than about 20. 
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